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We present a method for extracting high-spatial resolution dielectric constant data at microwave
frequencies. A scanning near field microwave microscope probes a sample and acquires data in the
form of the frequency and quality factor shifts of a resonant cavity coupled to the sample. The
approach reported here is to calculate the electromagnetic fields by the finite element method in
both static and time-dependent modes. Cavity perturbation theory connects the measured frequency
shifts to changes in the computed energy stored in the electromagnetic field. In this way, the complex
permittivity of the sample is found. Of particular interest are thin-film materials, for which a method
is reported here to determine the dielectric constant without the need to use any fitting parameters.

PACS numbers:

I. INTRODUCTION

The scanning near-field microwave microscope is a
novel instrument for measuring thin film dielectric prop-
erties with both high precision and high spatial resolu-
tion. In this technique, a sharpened probe extending
from a resonant cavity is coupled electromagnetically to
a sample brought into close proximity. In the geometry
used by our experiment, the fields of interest are well de-
scribed by the near field approximation, where the spatial
resolution is mainly determined by the tip-sample spac-
ing and the shape of the probe tip, rather than by the
wavelength λ. The challenge of this method is to convert
the frequency shift to the sample’s permittivity. Sev-
eral groups have followed an approach of modeling the
cavity-sample interaction by an image charge, located in
the sample, which interacts with another image charges
located inside the spherical tip.[1] A further refinement
of this approach is to model the tip as a perfectly con-
ducting sphere, and then rely on numerical calculations
to compute the frequency shift of bulk or thin film dielec-
tric samples.[2] An alternative approach is to model the
tip-sample interaction as an extension of a transmission
line.[3, 4] Often these approaches fall short of an exact
description of the actual experimental configuration and
in these cases, the model must be parameterized by mea-
surements against standard samples in order to compen-
sate for these discrepancies. In contrast, this paper re-
ports the development of an approach to more accurately
model the tip-sample interaction and by so doing, to de-
termine the complex permittivity of dielectric materials
at microwave frequencies. Perturbation theory provides
a framework, by which to convert the calculated electric
field distribution in the near-field zone of the microwave
probe into the frequency shift of the resonant structure
from which the field emanates. By comparing the cal-
culated to the measured shifts, the dielectric constant is
determined with good precision and with high spatial res-
olution for bulk and thin-film samples. For bulk samples,
the method described does require calibration to account

for the unknown energy stored in the cavity, but for this
films, no calibration is needed.

In specific, this paper reports a method to extract the
dielectric properties of bulk and thin-film samples from
SNMM data that are measured frequency shifts of a λ/4
cavity with a closed end. A finely sharpened tungsten
wire protrudes from the bottom of the cavity and the
sample is raised up into contact with the tip. The cav-
ity’s resonant frequency and quality factor changes as a
function of tip-sample separation. The field in the vicin-
ity of the tip is computed and the modeled response of he
cavity to the introduction of the smple is compared to the
measured quantity. There are a number of publications
on the experimental method used here [1, 5] and so the
apparatus will not be described in any more detail. This
paper will instead focus instead on extracting the dielec-
tric properties from the cavity’s response to the pertur-
bation of its electromagnetic fields by a sample. Several
aspects will be described: the accurate measurement of
bulk dielectric constants over a wide range of dielectric
constants (after a single calibration), the simulation of
the total loss to compute the imaginary component of
the bulk dielectric constant, and the measurement of the
dielectric constant of thin-films without the need for cal-
ibrations (which are difficult due to a lack of thin-film
standards). To this end, the paper will be divided into
seven parts:

• Theory and simulation: assumptions and approxi-
mations.

• Geometry and calculation of the static field.

• Extraction of the calibration constant for bulk mea-
surements.

• Parameter-free extraction of thin-film dielectric
constants.

• Determination of the imaginary part of the dielec-
tric constant.
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• Experimental measurements of bulk and thin-film
samples.

• Discussion of polarization, sensitivity, and spatial
resolution.

II. Theory and simulation:assumptions and ap-
proximations

In rare cases, the cavity’s response to a dielectric per-
turbation can be calculated in closed form, but more of-
ten, simulations and approximations must be used. To
this end, the cavity perturbation method provides a use-
ful framework for the conversion of frequency shifts to
a sample’s dielectric constant. The major assumption is
that the eigenmodes of the microwave field in the res-
onant structure (cavity + tip + surroundings) are un-
changed from those of the unperturbed cavity. Then,
the resonant frequency shift of the cavity can be related
to the change in the permittivity (∆ε), or permeability
(∆µ).

f − f0

f
=
−

∫ ∫ ∫
V0

(∆ε ~E · ~E∗0 + ∆µ ~H · ~H∗0 )dv∫ ∫ ∫
V0

(ε ~E · ~E∗0 + µ ~H · ~H∗0 )dv
(1)

Here, the subscript 0 represents the unperturbed case
[6]. To make use of Eq. 1, a further assumption is made
that the fields on the inside of the resonant cavity are not
changed by the sample, but only the fields in the region
of the tip are significantly altered. This is exemplified
by the 1/1000 shift in the resonant frequency of the cav-
ity upon sample introduction (See Fig. 7). In total, E0

= Ecavity + Etip + Esurrounding. All three fields con-
tribute to the stored energy of the structure. However,
when the sample is introduced, only the changes in Etip

+ Esurrounding need to be considered.
From a practical viewpoint, the calculation proceeds

by first computing the electromagnetic fields in the vicin-
ity of a bare tip by numerically solving Poisson’s equation
using a commercial PDE package, FEMLAB. The com-
putation is repeated with a geometry, which includes the
sample, and because the change in permittivity only oc-
curs within the small volume occupied by the sample,
this region is calculated with a dense mesh. The cal-
culated fields from both simulations are exported, and
post-processed (using Matlab) to numerically integrate
the scalar product of the fields over the volume of the
sample. In this way, the numerator on the right side of
Eq. 1 is computed. For nonmagnetic samples, ∆µ = 0,
and the perturbed energy can be simplified to be:

Epert = −
∫ ∫ ∫

V0

∆ε ~E · ~E∗0dv. (2)

III. Geometry and calculation of the static field
In more detail, the fields are calculated from a FEM-

LAB geometry, like the one in Fig 1. The high-
conductivity, tungsten tip is represented by an equal-
potential line, φ = 1V . After several measurements, the

FIG. 1: Schematic mesh of a dielectric sample in contact with
a tip. The tip shown here has a 5µm diameter flat spot on its
end. The thin film is about 400nm thick. The mesh is refined
twice in the area where the tip and sample come together.

tip is found to be slightly flattened, as shown in Fig. 1,
which qualitatively changes the electric field. For this
reason, the exact tip shape is determined by scanning
electron microscopy (SEM) after the experiment. As can
be seen from the Figure, the geometry is axially symmet-
ric, which allows a simplified and more efficient calcula-
tion in cylindrical coordinates.

The dielectric material under study is placed beneath
the tip. Fig. 1 depicts the ‘soft contact’, the point at
which the tip barely touches the sample. To be consis-
tent with the experiment, a ground plane is added below
the sample, the dielectric constants in all domains are ini-
tially set to one (to simulate the case without a sample),
and a mesh is generated. In order to obtain accurate re-
sults, the mesh near the tip end is refined several times,
and the near-field electric potential is found by solving
the Poisson’s Equation. See Fig. 2 and its inset for a
magnified view of the tip-film-substrate geometry. The
Figure shows that a strong electric field is confined to a
small region (approximately, 1µm×1µm) close to the tip
end. The gradient of the potential gives the solution for
the the unperturbed field E0, the values of which are ex-
ported to Matlab in the form of a FEM structure; ‘fem1’.

By changing both thin film and substrate domains to
the sample’s dielectric constant and redoing the simula-
tion without changing the mesh, the perturbed field for a
bulk sample or substrate is calculated. The values of this
solution over the entire geometry are exported as another
FEM structure; ‘fem2’. Proceeding further, the integral
of the inner product of these two vectors over the entire
sample volume is calculated to compute Epert.
IV. Extraction of the calibration constant for bulk
measurements
The denominator in Eq. 1 is the total energy of the cav-
ity and its surrounding space, which can be set equal to
a constant α, by the approximations already discussed,
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FIG. 2: The computed, near-field electric potential, static
case. The inset is a magnified view of contact area. The
electric potential is strongest at the very end of the tip, which
results in enhanced sensitivity to the sample below it.

FIG. 3: Calibration used to find the scaling factor α. The
experimental data are scaled to lie on top of the with the
simulation data, which end up overlapping well when the tip-
sample distance is less than 5µm. The scale factor, found
by calibating against a medium-high permittivity sample like
TiO2, is used to successfully measure samples whose permit-
tivities range from 3 to 300.

and Eq. 1 is rewritten,

∆f
f

=
Epert

α
. (3)

It is impractical to calculate the α numerically, as this
would require an accuracy greater than 1ppm for the in-
tegration over the entire space (sample + cavity). On
the other hand, this is hardly necessary, since α may be
treated as a parameter found by scaling the calculated
energy shift vs. tip sample distance curve so that it lies
on top of the measured data, as shown in Fig. 3.

This strategy, to compute the calibration constant, α,
from the dependence of ∆f/f on the distance between

the tip and a calibration standard, is used only for bulk
samples. An example is shown in Fig. 3 where Epert

and the resonant frequency are plotted as a function of
distance between the tip and a sample of bulk TiO2. The
open circles are the measured data and the triangles are
the calculated energy shifts. The data are obtained at
10 µm, 5 µm, 2 µm, 1 µm, 500 nm, 300 nm, 200 nm,
180 nm, 150 nm, 120 nm, 90 nm, 60 nm, 30 nm and 0
nm(contact). The curves are scaled to lie on top of one
another by multiplying the frequency shift data by a scale
factor of 1.6 × 10−12. V. Parameter-free extraction
of thin-film dielectric constants

For thin film samples, manipulation of Eq. 3 allows the
scaling factor to be eliminated. This approach proceeds
by alternately measuring a thin-film sample and a bare
substrate placed side by side on the ground plane. For
films that are only a few hundred nanometers thick, the
frequency shift is typically 20% greater than for a bare
substrate, especially when the thin film’s permittivity is
close to the substrate’s. The independent measurements
give two sets of data:

∆f
f thinfilm

=
Epert−thinfilm

α
(4)

∆f
f substrate

=
Epert−substrate

α
. (5)

Taking the ratio of these two expressions, α is canceled
and film’s dielectric constant can be determined directly.
That is

∆f
f ratio

=
∆f
f thinfilm

∆f
f substrate

=
Epert−thinfilm

Epert−substrate
. (6)

This approach is applied to a series of rare-earth,
metal-oxide thin films grown on LaAlO3, substrates
(ε=24) with different film thicknesses. By varying the
thin film permittivity from 1 to 300 in the finite-element
calculation, reference curves for the perturbed energy vs.
dielectric constant with different film thicknesses are cal-
culated, as plotted in Fig. 4. Then, the experimental
frequency shifts are converted to thin-film dielectric con-
stants by matching the measured value of the ∆f/fratio

with the value computed by the simulation. For example,
matching the experimental measurement of the frequency
shift ratio (1.2 in this case) for a 1000 nm film, the cor-
responding ε is found to be 70, as shown in Fig. 4. To
test the effect of the substrate thickness, its value is var-
ied from 500 µm to 2 mm in the calculation, resulting in
an immeasurable difference in frequency shift; thus the
substrates are be treated as being infinitely thick in the
calculation.

VI. Determination of the imaginary part of the
dielectric constant

By a similar approach to the previous section, the
imaginary part of the permittivity is determined with
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FIG. 4: Computed ∆f/f ratio curves, following Eq. 6 for thin-
film samples on a LaAlO3 substrate. The sample thickness
is varied by redrawing the calculation geometry, while ε is
varied parametrically. The resulting curves are used to look
up dielectric constants by finding the value of the permittivity
which will give the measured ∆f/f ratio. The example on the
graph shows that a ratio of 1.2 would result from a film with
a dielectric constant of 70.

the scanning near-field microwave microscope, a subject
on which there are no reliable reports so far. Unlike the
simulation of real part of the permittivity, this model is
based on a high-frequency EM model of Femlab for the
following reasons:

1. The loss in the medium is due predominantly to
dipolar motion, is intrinsically dynamic in nature,
and thus the time-dependence of the electromag-
netic field must be included in the calculation.

2. The real part of the permittivity can be obtained
by solving Maxwell’s equations over a small volume,
but the imaginary part needs to account for the ra-
diation loss in the surrounding space. That is, the
perturbation of the electric field in the near-field
region alone does not capture the entire loss mech-
anism, because the presence of a dielectric sample
also changes the radiated field.

The implementation is straightforward. A geometry sim-
ilar to that used in the quasi-static model is used except
for its dimensions. Here the full wave equation is solved
in the entire space below the cavity, and the energy loss
in the medium is obtained from the term (in Eq. 11)
accounting for the size of the dielectric absorption of the
EM field. In addition, the resistive heat loss, the cav-
ity loss, and radiation lost from the tip are included. Of
these, only the cavity loss cannot be accurately computed
(similar to the case for the static dielectric constant in
the previous section), but this can be determined from a
calibration against a standard sample.

FIG. 5: Geometry for the high frequency mode. The tip
showing here is about 3mm long. The feed point is the gap
between tip and sapphire disk, which connects the TEM field
inside cavity with the radiation field outside. The difference
between this and the static geometry (Fig. 1 is that here the
entire space between the cavity and the sample is discretized
in order to compute the radiation losses.

The calculation geometry, in Fig. 5, shows the space
between the bottom of the coaxial cavity and the sam-
ple, where the electromagnetic field is primarily a TEM
mode. The feed point, which is the gap between the tip
and the hole in the cavity through which it protrudes,
couples the EM field from inside to outside the cavity.
Part of this field travels along the wire extending from
the cavity, down its length to the tip, where it is coupled
to the sample as near-field radiation. The remainder of
the field dissipates radiatively into the free space between
the sample and cavity cap.

The feed point is modeled to be a classical, first-order,
low-reflecting boundary with an excitation field source,
Hϕ0:

~n×
√
ε ~E −√µ ~Hϕ = −2

√
µ ~Hϕ0, (7)

where

Hϕ0 =
Constant

r
. (8)

The tip, like any antenna, radiates into the free space
and into the sample where a damped wave propagates.
Since only a finite region can be discretized, the geom-
etry is truncated ten centimeters from the tip using a
similar absorbing boundary condition as the feed point
but without an excitation field. In this model, the dielec-
tric power dissipated is considered to be the total heat
generated by the electromagnetic fields interacting with
the material: damping of the vibrating dipole moments
and ohmic losses. As is often done, both terms, ωε” + σ
are lumped together to be an effective conductivity σeff .
[6]A related quantity of interest is the loss tangent, de-
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FIG. 6: Solution for the electromagnetic field in high-
frequency mode. The left-hand panel is a magnified view of
the contact area. A strong electric field is present at the tip
end, as is the case in quasi-static model.

fined to be

tan δ =
ωε” + σ

ωε′
. (9)

Thus, the absorption over the entire volume of the di-
electric sample can be expressed by:

Eresis.heat =
1
2

∫ ∫ ∫
v

Re[(σeff − jωε) ~E · ~E∗]. (10)

The solution proceeds by first drawing the geometry in
the FemLab graphical environment and then generating a
mesh. In areas where the field is likely to be intense, such
as the feed point, the tip surface, and the contact point
with the sample, the mesh is refined to reduce the cell
size to be as small as 100 nm, for an accurate calculation.
The solution obtained in this way is shown in Fig. 6.

On the right side of Fig. 6 is the full view of the simu-
lated EM field, where we can see that the field intensity
is concentrated near the feed point, and it attenuates
down the tip’s length. In the open space between the
cavity cap and sample, the radiation field is weak but
not insignificant, and the longer the tip, the greater the
radiated power. This is consistent with the experimental
observation that longer tips will lower the cavity’s qual-
ity factor, even though they are less well coupled to the
sample. Shorter tips have better coupling and lower loss,
but the measurements are influenced more by the far-field
component propagating from the feed point, resulting in
an increased sample-dependant background signal. In
the setup reported here, a 3 mm long tip is used.

The left panel of Fig. 6 is a close-up view of the field
distribution at the tip end, where the field is seen to
be concentrated at the contact point with the thin film,
and to penetrate only a few micrometers into the sam-
ple. Compared to the quasi-static model of the previ-
ous section, the accuracy of the near-field distribution
in this model is lower, because the number of the mesh

elements must be decreased in order to compensate for
the increased computational cost of the time-dependent
simulation. Nevertheless, the essential characteristics of
the near field are nearly the same as in the quasi-static
model.

After solving for the electromagnetic field, the rela-
tionship between the quality factor and energy loss can
be established. Physically, the quality factor compares
the stored energy of a resonant structure to the rate at
which it dissipates that energy. For the experiments dis-
cussed here, the energy losses come from currents in the
cavity walls, Ecavloss, radiation from the tip, Etiploss, and
ohmic heating in the sample, Eresis.heat. The correspond-
ing quality factors are:

Qcav = ω × Etotal

Ecavloss
, (11)

Qtip = ω × Etotal

Etiploss
, (12)

Qresis.heat = ω × Etotal

Eresis.heat
, (13)

and the total Q is given by:

1
Qtotal

=
1

Qcav
+

1
Qtip

+
1

Qresis.heat
. (14)

Generally, the average energy stored in cavity; Etotal, and
cavity wall loss, Ecavloss, are almost impossible to mea-
sure, but these quantities can be determined from cali-
brations against known samples, in this case, air, Qair

and a standard, Qsample. Since the majority energy in
the system is stored inside cavity, the sample is treated
as a small perturbation, and Etotal can be assumed to
be the same in both measurements. Ecavloss must also
be the same because this factor is sample independent.
Upon taking the ratio of Qair to Qsample, Etotal is can-
celed, leaving Ecavloss as the only unknown factor. A
standard sample with a known loss tangent is measured
to determine Ecavloss, and having determined this pa-
rameter, other unknown samples can be measured. The
calibration is performed against bulk LaAlO3, with a loss
tangent of 2×10−5.[6, 7] The total effective conductivity
is then:

σeff = tanδ × ω × ε′ = 4.9× 10−5. (15)

Without a sample, the measured resonant frequency
is ωair=2π×1756MHz, Qair=878. With a sample
beneath the tip, the resonance frequency shifts to
ωLaAlO3=2π×1747MHz, QLaAlO3=790. From Eqs. 11
through 14,

Qair = ωair ×
Etotal

Ecavloss + Etiploss−air
(16)
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QLaAlO3 = ωLaAlO3

× Etotal

Ecavloss + Etiploss−LaAlO3 + Eresis.heat−LaAlO3

.(17)

Here, Etiploss, the power flow by radiation, is determined
by integrating along the tip boundary using the Fem-
lab postprocessing function. These calculations show
that when a sample is present, Etiploss increases from
1.11 × 10−9 to 2.33 × 10−9. Similarly, Eresis.heat is the
sum of the resistive heating over the entire thin film and
substrate domains, which can be integrated by inserting
σeff into Eq. 10. As mentioned previously, Ecavloss is
assumed to be independent of the sample and is the only
unknown parameter to be found by the calibration pro-
cedure. Its value is found to be 19.132 × 10−9, which is
almost 10 times greater than the sum of tip loss and re-
sistive heating loss. By combining this value with the the
cavity’s calibration factor, an unknown sample’s loss tan-
gent can be calculated. The results of these calculations
are listed in the Table I.

TABLE I: The size of each term in the total energy loss cal-
culation. The resistive losses from the cavity walls dominate
the others.

Energy Value Source
Etotal Unknown Canceled
Etiploss−air 1.113× 10−9 Femlab
Ecavloss 19.132× 10−9 LaAlO3 calib.
Etiploss−LaAlO3 2.331× 10−9 Femlab
Eresis.heat−LaAlO3 9.212× 10−10 Femlab

VII. Experiment: Measurement of bulk and
thin-film samples
Before measuring the dielectric constant of a sample, its
thickness is measured and the copper stage is separated
from the tip by a distance exactly equal to the sample’s
thickness. At this position, the background resonant fre-
quency, f0, is recorded, consistent with the boundary con-
ditions set in the numerical simulation. The sample is
glued onto the stage with thermal cement and is brought
steadily to within few microns of the tip. [5, 8] As the
tip approaches, the resonant frequency begins to drop
and the measurements begin when the frequency drops
to f0. When the sample is brought even closer to the
tip, the frequency decreases more dramatically, because
of the near field coupling between the tip and the sample.
Since accurate vertical positioning is critical for our mea-
surement, a piezoelectric actuator is used for the closest
approach. Voltage steps are applied to produce incre-
mental movements as small as 30 nm, and the dielectric
constant measurement is made by stepping the sample
towards the tip until the sample just contacts the tip. A
typical plot of frequency vs. tip-sample separation for
a rare earth element thin film on a LaAlO3 substrate is
shown in Fig. 7.

Panel A of Fig. 7 is a plot of resonant frequency vs.
approach distance. The distance is offset by the sam-
ple position, which is determined by the tip-sample con-

FIG. 7: A plot of the cavity’s frequency change vs. tip-sample
distance (Panel A), and its derivative (Panel B). These mea-
surements show a clear maximum in df/dz at the contact
point.

FIG. 8: A plot of the quality factor vs. tip-sample distance
for a thin-film sample. The offset on the horizontal axis is
about 400 µ. Typically, the quality-factor data are more noisy
than those for the frequency shift, and so the latter is used to
determine the contact point.

tact point. The background frequency, f0, as mentioned
above, is noted on graph to define the point at which the
measurement begins. The contact point is determined
by the df/dz curve, in Panel B, where as expected, the
strongest interaction occurs and df/dz reaches its maxi-
mum value. The piezo is allowed to advance 2 or 3 points
past the contact point to insure that peak is not caused
by noise. Once the contact point is determined, the fre-
quency shift, ∆f , is found, as shown on the graph. For
low-dielectric-constant materials, the shift is small, and a
typical ∆f/f ratio is less than 1/1000. The quality fac-
tor, Q, is obtained simultaneously, and Q0 and Qcontact

are determined in the same way as f0 and fcontact, with
the contact point determined from the df/dz plot.

Using the measurement techniques and numerical
modeling derived here, the dielectric constant for both
bulk and thin film samples are measured. Examples of
measurements of a number of bulk materials are shown
in Table II. The agreement between our measurements
and the literature values is good.
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TABLE II: Table of dielectric constant measurement for bulk
samples. All values are determined by the same calibration
constant from a TiO2 sample. Except for the teflon sample,
the measured complex dielectric constants agree well with ac-
cepted values. The TiO2 value listed below is from a second
sample, measured to get a sense of the sample-to-sample vari-
ation in the dielectric constant measurement.

Sample ε ε[9] tanδ tanδ[10, 11]
Measured Literature Measured Literature

Teflon 3.16 2.4 3.6× 10−5

Sapphire 9.8 9.5 1.8× 10−5 1.4× 10−5

MgO 9.53 9.8 1.8× 10−5 1.6× 10−5

STO 278.2 276 1.804× 10−4 1.6× 10−4

BTO 292.23 300 0.513 0.47
TiO2 91.7 86 1.5× 10−2 1.2× 10−2

In Table III are the permittivity data for a group
thin films on LaAlO3 substrates, determined by the
method of Eq. 6. The film’s permittivities are shown
in the last column. The consistency of the approach
is checked by comparing measurements of two pairs of
films with identical compositions but with significantly
different film thicknesses, LaScO3 and PrScO3. Any
errors resulting from changes in tip geometry during the
sequence of measurements or from numerical artifacts
related to different film thicknesses would be indicated
by a disagreement in the values of ε for the samples of
each pair. As can be seen, excellent agreement is found,
indicating the robustness of the measurement.[12]

TABLE III: The measurement of rare-earth scandate thin
films on LaAlO3 substrates. By using the ratio vs. ε curves
calculated from the simulation (Fig. 4), the films’ permit-
tivities are found without introducing any fitting parameters.
The first and last two samples are noted for having the same
composition but different thicknesses.

Thin film sample Thickness(nm) Film ε with error
LaScO3 953 32.3±1.5
PrScO3 1000 29.6±1.2
NdScO3 309 47.0± 3.0
SmScO3 372 37.3± 2.0
TbScO3 312 38.7± 4.7
GdScO3 704 31.0± 2.0
DyScO3 215 31.3± 2.1
HoScO3 226 31.7± 1.5
ErScO3 245 19.7± 1.5
YScO3 500 20.3± 1.5
LaScO3 400 32.3±1.2
PrScO3 350 30.0±2.0

VIII. Polarization, Sensitivity, and Spatial Res-
olution

The sensitivity of the measurement is mainly deter-
mined by the tip flatness and tip-cone angle, both of
which change as the tip end is deformed during the mea-
surements.

FIG. 9: The electric field intensity for the radial and az-
imuthal polarizations near the tip end. Clearly, the azimuthal
component is dominant, which makes the measurement pri-
marily sensitive to the out-of-plane dielectric constant.

The spatial variation of the radial and azimuthal compo-
nents of the electric field (See Fig. 9.) reveals much about
the nature of the measurement. First, the z-component
is a few hundred times larger than r-component, which
leads to the conclusion that the dominant component of
the electric field is polarized along z-axis. Second, the
field reaches its maximum value at the edge of the tip,
and then decays rapidly, which for this case defines Ez

by a 2.25 µm radius ring with 250 nm width, the actual
interaction area of the sample with the electromagnetic
field. This particular field distribution is qualitatively
different from the field emanated by a spherical tip.[8]
Overall the analysis indicates that the spatial resolution
is almost identical to the diameter of the flat end of the
tip, typically between 200 nm to 6 µm). Thus, for a
high spatial resolution measurement, a small, sharp tip
is must be used.

The dielectric sensitivity is also influenced by the
tip-cone angle and flatness, because these determine the
effective area of the tip and its coupling to the sample.
The ∆f/f ratio for different values of tip flatness is
calculated, and the results are plotted in Fig. 10 It is
found that the flatter the tip, the higher the sensitivity
(shown by a larger change in perturbed energy), but
when the flatness exceeds 3 µm, the sensitivity saturates.
Thus, Fig. 9 can be used to optimize the tip geometry
that achieves the tradeoff between high measurement
sensitivity and the desired spatial resolution.
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FIG. 10: Sensitivity analysis of tips with different flatnesses.
For a lanthanum aluminate substrate, the thin film’s permit-
tivity is varied from 1 to 300. Clearly, the flatter the tip, the
more sensitive the permittivity measurement, until the flat-
tening exceeds 3µm, at which point, the sensitivity begins to
saturate.
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